

Kontakt

Karl Lingenfelder, Heilpraktiker Magister Health Science and Management

Universitätsplatz 7

36037 Fulda

Tel.: 0661-25 00 97 90

Fax: 0661-48 01 85 99

info@praxis-lingenfelder.de www.praxis-lingenfelder.de

Supportive und komplementäre Strategien in der Onkologie

Teil 3

Tumor-Metabolismus und Microenvironment

Krebs ist eine metabolische,

epigenetische, genetische,

immunologische, dynamische und

scheinbar auch

chronologische Krankheit

Chronologische Aspekte

Metastasen bilden sich im Schlaf

Brustkrebs ist nachtaktiv

28.06.2022 | Quelle: Pressemitteilung

Brustkrebstumore bilden hauptsächlich dann Ableger, wenn die Betroffenen schlafen – dies zeigt eine neue Studie unter der Leitung von Forschern der ETH-Zürich. Die Erkenntnisse könnten die Art, wie Krebs zukünftig diagnostiziert und behandelt wird, stark verändern.

- aerobe Glykolyse (Warburg-Effekt)
- anaerobe Glykolyse
- GLUT1 und/oder GLUT4 ↑
- glykolytische Enzyme Hexokinase 2, Pyruvatkinase 2 ↑
- G6PDH↑
- Glutaminolyse
- Lipolyse
- Laktat ↑
- ROS ↑
- MtROS ↑ über Citrat-Zyklus und Elektronentransportkette (ETC)
- mitochondriale Prozesse im Citratzyklus mit OXPHOS \
- Pentosephospahtweg (PPP)
- NADH J
- NADPH ↑

- oxidative Phosphorylierung (OXPHOS)
- ß-Oxidation von Fettsäuren
- mitochondriale Steuerung von Tumortransformation, -Progression, Metastasierung, Resistenz
- Glutathion, SOD, NRF2 ↑
- TP53 und TIGAR ↑(Tp53-induzierbare Glykolyse- und Apoptose-Regulator) mit Induktion von Glykolyse
- Reverser Warburg-Effekt (umgebende Fibroblasten produzieren Laktat -Mitophagie - Laktatrücktransport in die Krebszelle -Umwandlung in Pyruvat - Citratzyklus - OXPHOS

Glucose-Metabolismus Fettmetabolismus Eiweißmetabolismus

Berberin, Metformin Lovastatin Dipyridamol

Um den Krebs auszuhungern braucht es die 4 Säulen: Bewegung, Diät, Supplements und Off-Label-Präparate

- erhöhte Mitophagie verringert Krebs-Fortschreiten
- Tumor kann sowohl den glykolytischen als auch den oxidativen Stoffwechselweg nutzen
- alternative Kohlenstoffquellen, wie Glutamin, Serin/Glycin und Fettsäuren sind oxidierbare Substrate für den Citrat-Zyklus
- Fumarat, -Succinat und 2-Hydroxyglutarat (2-HG)als Onkometaboliten für Proliferation, Fortschreiten und Aggressivität
- schwere hypoxische Zustände bei hohen 2-HG-Spiegeln
- Onkometaboliten in Konkurrenz zum α -Ketoglutarat
- Veränderung von Histonen
- BcL-2 ↑ als Apoptose-Inhibitor
- HIF ↑

- tumorales Gefäßsystem kann aufgrund ungeordneter Struktur und Eigenschaft nicht genügend O₂ liefern
- zwischen Tu-Größe und -Durchblutung besteht eine logarithmische Beziehung
- Kolonkarzinome >25 g sind schlecht durchblutet (Glykolyse), während <25 g gute Durchblutung vorherrscht (OXPHOS)
- kritische Diffusionsstrecke des O_2 reicht meist für Glucose und Glutamin nicht aus
- Tu nimmt postabsorptiv große Mengen Glukose auf
- Glukose-Metabolismus im Cytosol führt zum Anstieg von Laktat (Laktat-Pyruvat-Ratio steigt)
- Glutamin-Metabolismus v.a. mitochondrial (M2PK steigt)

Beispiele klinische Studien

- **B-Lapachone** Mitochondrien
 ROS↑, Topoisomerase ↓
 halbsynthetischer roter Lapacho
 Gliome, Pankreas, Lunge, Melanom
- Resveratrol Mitochondrien
 ROS ↑, mitochondr. Membran-Permeabilität ↑, FASN ↓
 Brust- und Kolonkarzinomen
- Metformin Glykolyse, OXPHOS
 Glukosemetabolismus
 LETC-Komplex
 LAMPK
 Prostata, Brust, HNO
- Quercetin Lipid-Metabolismus, FS-Synthese FASN \(\) Plattenepithelkarzinome

sinnvolle Laborparameter:

TKTL1 †: aerobe Glykolyse und PPP (Pentosephosphatweg)

M2PK ↑: Glutaminolyse (kleine Tumore, Metastasen mit aerobem Stoffwechsel, Hirntumore, AML, OXPHOS)

→ Sauerstoff, da Tumor nur über PPP Antioxidatien herstellen kann

LDH-Isoenzyme ↑ (insbesondere die Isoenzyme 4 und 5): OXPHOS ↓

Laktat-Pyruvat-Ratio (< 1,0 v.a. OxPhos, >1 v.a. Glykolyse)

ATP-Check: Mitochondriale Kapazität

Nitrotyrosin, Citrullin, Methylmalonsäure: Nitrostress

PEROX: oxidativer Stress

VEGF, FGF, MCP-1, IL-8: Angiogenese

CRP, Neopterin, NfkB, COX-2, 5-LOX, RANTES: Inflammation

uPAR: Tumor-Progression und Metastasierung

- signifikante Veränderungen der pH-Werte und der Redoxpotentiale innerhalb und außerhalb der Zelle.
 Je niedriger der pH, desto höher das Redoxpotential
- durch Hypoxie permanente Redose in proliferierenden Zellen mit erhöhter Akkumulation von Glutathion, NADPH, Cystein, Glutamin und Glukose
- hohe Expression von NADPH (Quinon-Oxireduktasen). NADPH dient nicht wie NADH der ATP-Gewinnung, sondern als intrazelluläres Reduktionsmittel
- hohe Akkumulation von Übergansmetallen (Eisen, Nickel, Chrom, Zink, Cadmium, Quecksilber und Blei)
- Eisen- und Zinkpräparate daher eher kontraproduktiv

- vermehrte GLUT1-Transporter zum Eischleusen von Glukose
 - → Hochdosis-Vitamin C (25-75 g), 2-DDG, Metformin, Galaktose, Resveratrol, DCA, Genistein
- vermehrter HIF1 (Hypoxie-induzierter Faktor)
 - → HIF-Inhib.: Quercetin, Curcumin, Resveratrol, Berberin, EGCG
- extrazelluläre Azidose fördert Tumorwachstum und Metastasierung und blockiert zugleich die Tätigkeit immunkompetenter Zellen
 - → Kalium, Magnesium, Bicarbonat, Sauerstoff
- VEGF ↑ Angiogenese
 - → Curucmin, EGCG
- Übergangsmetalle † (Eisen, Zink, Schwermetalle)
 - → Fenton-Reaktion via Artesunat, Hochdosis Vitamin C (25-75g)

- erhöhte Glutathionsynthese → Resistenz gegen Chemo und Strahlen → Proliferationsneigung
 - → Selen 4.000 µg i.v.
- intrazelluläre Alkalisierung mit aerober Glykolyse
 - → Metformin 2 x 500 mg, 2-Desoxy-D-Glucose-Infusion
- vermehrte MCT (Monocarboxylat-Transporter) zum Ausschleusen von Laktat
 - → Basen, Kalium, Magnesium, Bicarbonat, Sauerstoff
- Aktivierung des Na⁺/H⁺ Antiporter-Systems NHE1 und der V-ATPase Protonen-Pumpen zur ununterbrochenen Ausleitung von Laktat
 - → PPI, z.B. Omeprazol, H2-Blocker Cimetidin, Famotidin

LDH-IE 4+5, Laktat/ Pyruvat	-	+ / -	+ / -	+ / -
M2PK	- / 🛪	*	*	- / 🗷
TKTL1	-	-	+	+
dominater Metabo- lismus	oxPhos Glut	Glut PPP	PPP Glut	PPP Gly

Glut =Glutaminolyse

oxPhos =
oxidative
Phosphorylierung

PPP =
Pentosephosphatweg

Gly = Glykolyse

HIF-1

- Hypoxie-induzierter Faktor, Transkriptionsfaktor
- wichtig f
 ür Zellreaktion auf Sauerstoffmangel
- unter Hypoxie werden Hydroxylasen gehemmt
- HIF-1 aktiviert:
 - EPO-Synthese
 - G6PDH und somit PPP
 - VEGF
 - anaerobe Glykoloyse für ATP-Synthese
 - NFkB
 - Quieszenz (Verbleib im Ruhestadium G0)
- HIF-1 wird bei Entzündung und in Tumoren gebildet, was insbesondere NFkB, proinfl. Zytokine und Angiogenese anregt
- daher ist die HIF-Blockade bei Krebs oft wichtig
- Labor: VEGF und NfkB
- HIF-1-Inhibitoren

Tumorstoffwechsel und therapeutische Ideen

In Stadium 1 und 2 eher antioxidativ,

im Stadium 3 und 4 eher **prooxidativ**

- → ketogene Ernährung
- → Sauerstofftherapien (Ozon)
- → Hochdosis-Vitamin C (ab 30 g)
- → Artesunat

DCA (Dichloracetat oder Dichloressigsäure)

- inhibiert Laktatazidose (Pyruvat-Dehydrogenase-Kinase-Inhibitor)
- schaltet Mitochondrien in der Krebszelle wieder an und regeneriert so die Zelle oder leitet die Apoptose ein
- proapoptotisch
- mitochonrienprotektiv
- Transketolase-Inhibitor (Thiaminsenkung)
- 12,5-25 mg/kg KG/d = 1,5 2 g DCA in 100 ml NaCl
- nicht mehr, als 20 Infusionen (Neurotoxizität)
- auch oral möglich (2-3 x tgl. 100-300 mg)

2-Desoxy-D-Glucose

- Glucose-Analog
- wird durch Glut-Transporter in Zelle aufgenommen
- hemmt Glykolyse durch G6P-Isomerase
- hemmt Tumorwachstum
- fördert Autophagie durch Absinken von ATP und ROS-Bildung
- hemmt PPP
- stimuliert den Glukoseabbau im Zitronensäurezyklus (Pyruvatbildung)

2-Desoxy-D-Glucose

- induziert eine Atmungshemmung in der Tumorzelle
- hemmt Angiogenese
- hemmt Metastasierung
- hemmt epileptische Anfälle
- wirkt antiviral, (besonders auf die Replikation des HPV8 (Lymphome)
- Infusion mit 100 ml, 1%

Glucose transporters in cancer – from tumor cells to the tumor microenvironment

Pierre-Benoit Ancey, Caroline Contat, Etienne Meylan

✓

First published: 12 June 2018 | https://doi.org/10.1111/febs.14577 | Citations: 75

EGCG

- reduziert Chemo-Efflux (PGP, MDR1, ATPase, ABCB1 und BRCP bei Mamma-CA, Tamoxifen-Resistenz, Glioblastom-Stammzellen mit Temodal-Resistenz)
- antitumorös, DNA-Reparatur und -Stabilisierung
- HDAC (Histon-Deacetylasen) Inhibitor
- CDK (Cyclin-Dependent-Kinase)-Inhibitor (Brustkrebs, Retioblastom)
- Autophagie, Senolyse
- Telomerase-Inhibitor der Krebszellen, bei gesunden Zellen Induktor
- JAK, STAT, MAPK, PI3K, AKT, WNT, Hedgehog, NOTCH 8
- Cave: nicht gleichzeitig mit dem Proteasom-Hemmer
 Bortezomib (Velcade) bei Plasmozytom / multiples Myelom geben (Total-Inhibition)

Artemisinin / Artesunat

- Artesunat enthält eine Trioxan-Brücke (Peroxid-Brücke)
- 2015 erhält Malariamittel die chinesische Forscherin Youyou Tu für die Entdeckung von Artemisinin den Nobelpreis in Medizin
- inhibiert NF-kB, induziert Autophagie und Apoptose, antiinfektiös, Zellzyklusarretierung G1/S-Übergang, prooxidativ, antiangiogenetisch (senkt VEGF), antimetastatisch
- besonders wirksam, wenn Eisen niedrig und Ferritin hoch ist (Fenton-Reaktion)
- Studien zu Mamma, Prostata, Kolon, Glioblastom, Leukämie, Melanom, Bronchialkarzinom
- viele Studien von Prof. Efferth, Mainz
- evtl. Eisengabe

Artesunat

- Metabolisierung über Cytochrom P450 3A4
- als Infusion 250-500 mg in Bicarbonat auflösen und dann in 100-250 ml NaCl
- Infusions-Wochendosis < 1,5 g
- oral 3-4 x tgl. 50 mg
- evtl. Abfall von Leukozyten und Erythrozyten
- es gibt Studien, z.B. vom deutschen Krebs-Forschungszentrum in Heidelberg (Brustkrebs)
- Indikationen: Mamma, Ovar, Prostata, Glioblastome, Gebärmutter
- HWZ: 6-8 h

Curcumin

- antiinflammatorisch, antioxidativ
- antiparasitär, antibakteriell, antiseptisch
- immunmodulierend
- neuro-, hepato-, nephro-, kardio- und pulmoprotektiv
- strahlenprotektiv, strahlensensitiv, chemosensitiv
- antiumoral, antimutagen, proapoptotisch
- antimetastatisch, antiangiogenetisch
- reduziert Krebszell-Migration und -Metastasierung
- Pubmed listet aktuell knapp 6.000 Arbeiten zur Wirksamkeit bei Krebs

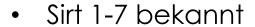
Curcumin

- krebshemmend (NF-kB↓, proinflammat. Zytokine ↓)
- Apoptose ↑, Chemotherapieresistenz ↓
- Darmpolypen J (Anzahl um 60%, Größe um 50%)
- antiangiogenetisch
- CURCUMIN DIRECT Spray (www.Curanatur.de): bis zu 18 Sprühstöße in die Wangenschleimhaut (z.B. 6 x 3 Sprühstöße
- Curcumin-Infusionen 1-3 x wöchentl.

Curcumin

synergistisch mit

Paclitaxel, Cisplatin, Gemcitabin, Mitoxantron, Taxane, 5-FU, Temodal, Herceptin

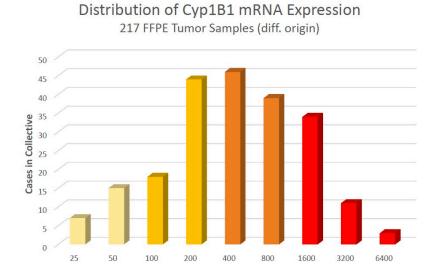

nicht synergistisch mit

Brentuximab, Dacarbazin, Daunorubicin, Docetaxel, Doxorubicin, Etoposid, Everolimus, Irinotecan, Methotrexat, Paclitaxel, Pemetrexed, Temsirolimus, Topoteca, Trabectedin, Vinblastin, Vincristin.

 sollte auch nicht kombiniert werden mit den sog. "small molecules-Antikörpern", die mit nib enden.

Sirtuine

- Histone steuern Gleichgewicht zwischen Apoptose und Zellüberleben. Sie ver- und entpacken die DNA
- Resveratrol, Quercetin und Fasten erh
 öhen Sirt1
- DNA-Stabilität und Telomerschutz, Gen-Silencing: protektiv gegen Krebs
- erhöhen Mitochondrien, verbessern Insulin-Sensitivität
- Minimierung chronischer Entzündungsprozesse
- verbessern Funktion von p53
- hemmen Tumorwachstum via Zell-Zyklus Arrest und Abschalten von Onkogenen
- erhöhen zelluläre Autophagie, senken M2-Makrophagen


Salvestrole

- im konventionellen Anbau haben Obst und Gemüse kaum noch Salvestrole, da sie mit Pflanzenschutz-mitteln behandelt werden und so keine eigene Abwehr benötigen
- schmecken bitter (häufig unerwünscht)
- Nahrung enthält heute ca. 80% weniger Salvestrole, als vor 50
 Jahren
- wirken krebshemmend beim Menschen
- wirken als Präkursor auf CYP 1B1
- → leiten selektiv Apoptose der Tumorzelle ein
- z.B. Resveratrol-Infusionen 1-3 x wöchentl. 100-300 mg

CYP1B1 und Salvestrole

- etwa 25% haben eine starke Überexpression (rot) und sollten von einer Salvestrol-Therapie profitieren
- weitere 37% haben eine Überexpression (orange). Mildere Indikation für Salvestrole

Class of Expression

Resveratrol

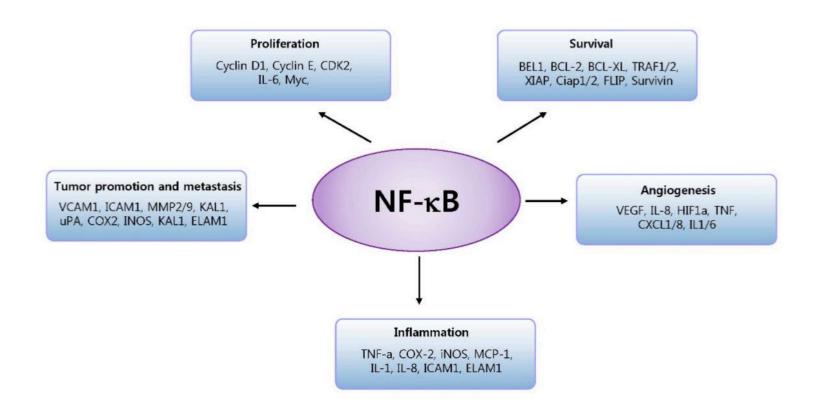
- antioxidativ, antiinflammatorisch, antimutagen, antibakteriell, antitumorös, proapoptotisch (siehe Salvestrole), krebspräventiv (Prostata)
- NFkB\, Bcl-2\, Telomerase\, Krebsstammzellen\
- Stilben-Derivat (ähnliche Wirkung, wie Tamoxifen)
- hemmt Krebszell-Wachstum (Lunge, Brust, Darm, Prostata, Pankreas, Magen, Colon, Haut, Leukämie)
- 100-300 mg Infusion in 250 ml NaCl
- nicht mit Paclitaxel-Chemo kombinieren

Berberin

- Isoquinol-Alkaloid aus verschiedenen Pflanzen
- mehrere Krankheiten inkl. Typ 2 Diabetes, neurologische Erkrankungen, kardiologische Erkrankungen, antibakteriell, antiinflammatorisch, zytotoxisch (v.a. gastrointestinal), proapototisch, pro-mitochondrial, antiviral (Herpes)
- IDO-Inhibitor, Telomerase-Inhibition, p-53-Aktivierung, COX-2-Hemmung, induziert Autophagie
- verstärkt Radiatio
- verstärkt Chemo mit Vincristin, Irinotecan, Taxol, Cisplatin, Evodiamin
- morgens und abends 500 mg

Quercetin

- Flavonoid, in Pflanzenrinden enthalten (Apfelschale, Zwiebeln, Grüngemüse, Beeren, Ginkgo, Tees, Rotwein
- antidepressiv, neuroprotektiv (Alzheimer und Parkinson), schützt vor grauem Star, immunstärkend
- Östrogen (Prostatitis, BPH, Prostatakrebs), antihistamin, antioxidativ, antiproliferativ
- Autophagie und Senolyse
- HSP-90, Chaperone-Inhibitor
- Lunge, Gehirn, Uterus, Blut, Melanom, Speicheldrüsen, Pankreastumor-Stammzellen
- Wirkverstärkung von Doxorubicin, 5-FU, Oxaliplatin, Dacarbacin
- Wechselwirkung mit Bortezomib (Velcade)
- morgens und abends 500 mg



NF-kB

- zentraler Starter der Inflammation
- Migration über Metallproteinasen ↑
- Proliferation
- Mutation
- Angiogenese über IL-8 ↑
- TAMs↑
- Inflammation[↑]
- Apoptose↓
- erhöht bei fast allen Tumoren, v.a. Mamma-CA, gastrointestinalen Tumoren, Colon-CA, MS, Rheuma, Arthritis, Arteriosklerose
- Inhibitoren: Artesunat, Curcumin, EGCG, Resveratrol, 6-Shogaol, Quercetin, Genistein, Kaffee, Thymian, Oregano, Knoblauch, Soja, Zwiebeln

NF-kB

Telomerase

- Enzym des Zellkerns
- besteht aus dem Protein (hTERT) und einem langen RNA-Anteil
- hTERT: humane Telomerase-Reverse-Transkriptase
- es verwendet die Telomerase-RNA als Vorlage und verlängert sie
- stellt die Endstücke der Chromosomen, die sogenannten Telomere wieder her
- die Telomerenlänge ist etwa 10 kb (Kilobasen), nach ca. 50-100
 Zellteilungen ist sie noch 4-6 kB, danach geht die Zelle in die Ruhephase über und teilt sich nicht mehr

Telomerase

- Telomerase-Aktivität ist nur in bestimmten Zellen: in einzelligen Organismen oder sich kontinuierlich teilenden Zellen, wie Knochenmarkszellen, Keimzellen, Embryonalzellen, Stammzellen, bestimmte Arten von Immunzellen (aktivierte Lymphozyten) und in Krebszellen
- bei jeder Replikation verkürzen sich die Chromosomen um 100-200 Basenpaare
- zum Ausgleich fügt hTERT tausende Kopien der Nuklein-basen TTAGGG einzelstrangig den Telomeren zu
- 85-94% aller Tumorzellen haben erh
 öhte TERT-Aktivität
- Protoonkogene C-MYC und RAS-MAPK stimulieren TERT (hTERT).
 P53 führt zur Repression von TERT

Telomerase-Inhibitoren

Apigenin (Kamille)

EGCG (Grüntee)

Quercetin (Liebstöckel)

Mistel

Saponine (Bohnen)

Papaverin (Mohn)

Phenolicsäure (Kaffee)

Costunolide (Magnolie)

Allicin (Knoblauch)

Rubropunctatin (roter Reis)

Sanguinarine (Schöllkraut)

Resveratrol (Blaubeere)

Gingerol (Ingwer)

Curcumin (Kurkuma)

Diosgenin (Yamswurzel)

Genistein (Rotklee, Soja)

Indol-3-carbinol (Brokkoli)

Helenalin (Arnica montana)

Ginsenoside (Panax ginseng))

Sulforaphane (Brokkoli)

Berberin

Daidzein (Kudzu-Pflanze)

Telomerase-Inhibition

Brust Melissa officinalis

Hals EGCG

Colon Morus rubra (rote Maulbeere)

Leber Atractylis lancea (chin. Kraut)

Lunge Melissa officinalis

Prostata Melissa officinali

Melanom Resveratrol

Curcumin inhibiert Telomerase in allen Krebslinien

Telomerase Inhibitors from Natural Products and Their Anticancer Potential

by Kumar Ganesan [©] and 🕼 Baojun Xu ^{*} 🖾 [©]

Food Science and Technology Program, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai 519087, China

* Author to whom correspondence should be addressed.

Int. J. Mol. Sci. 2018, 19(1), 13; https://doi.org/10.3390/ijms19010013

Received: 23 November 2017 / Revised: 10 December 2017 / Accepted: 19 December 2017 / Published: 21 December 2017

(This article belongs to the Special Issue Role of Telomeres and Telomerase in Cancer and Aging)

ABC-Transporter

- ATP-Binding Cassette Transporter
- Membranproteine, die aktiv Substarte über die Zellmembran transportieren
- Effluxpumpen, vor allem auch in Tumor-Stammzellen aktiv
- ABC-Transporter-Inhibitoren:
- EGCG (ABCB1, JAK, MAPK, BRCP bei Mamma-CA mit Tamoxifen-Resistenz, Glioblastom mit Temodal-resistenz)
- Curcumin (MDR, MDR-1, Tamoxifen, Cisplatin, Doxorubicin, Vincristine, Mitoxantron, Chlorophyll, ABCB1, ABCG2, Leukämie)
- Apigenin (MDR bei ALL, BCRP bei Mamma-CA, Doxorubicin, Docetaxel, ABCB5, diverse ABC)
- Berberin (Pankreastumor-Stammzellen, ABC, ABCC1, BCRP/ABCG2 bei Mamma-CA

Kaffee

- Coffein ähnelt chemisch dem Adenosin und besetzt dieselben Rezeptoren
- Coffein induziert jedoch selbst keine Wirkung, sondern verhindert den Zutritt von Adenosin zum Rezeptor und schwächt so dosisabhängig dessen Wirkungen ab oder hebt sie vollständig auf
- Adenosin-Pathway mit 200 mg Koffein morgens blockieren

opus.bibliothek.uni-wuerzburg.de → files → Sumski_An... ▼ PDF

Aus der Klinik und Poliklinik für - OPUS Würzburg - Universität ...

Pathologie – Adenosinrezeptoren und Krebs Adenosin führt zur Inhibierung von CD8(+) und CD4(+) Antitumor-T-Zellen und NK-. Zellen [56]. Durch die ...

von AM Sumski · Ähnliche Artikel

> Int Immunopharmacol. 2019 Dec;77:106002. doi: 10.1016/j.intimp.2019.106002. Epub 2019 Nov 8.

Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody

Gullanki Naga Venkata Charan Tej 1, Kaushik Neogi 1, Prasanta Kumar Nayak 2

Affiliations + expand

PMID: 31711939 DOI: 10.1016/j.intimp.2019.106002

Allgemeine Maßnahmen

- moderate Bewegung (am besten nach jedem Essen 15 Minuten flott gehen und dabei Pobacken anspannen)
- Intervallfasten
- Verzicht auf Alkohol, Schweinefleisch, Wurst, Zucker, Weizen, Kuhmilch
- metabolischen Phänotyp ermitteln
- bei Glutaminolyse (kleine Tumore, kleine Metastasen, M2PK ↑) kein Fleisch, keine Bohnen
- ausreichende Versorgung mit Omega-3-FS, Vitamin B6, Niacin (Vitamin B3), Vitamin D, K, Mg, Selen, Carnitin, Basen
- Aushungern des Tumors mit Aspirin, Metformin, lipophile Statine, Dipyridamol, Mebendazol, Doxycyclin, Niclosamid
- Apoptose-Induktion mittels Diclofenac oder liposomales Ibuprofen und dazu ein Statin ↑

Stoffwechselsteuerung

- P13K/AKT steigert Glykoloyse und Lipolyse, Adhäsion, Angiogenese, Migration, Resistenz
- p53-Gen schützt mitochondriale OXPHOS, bei Erschöpfung oder Mutation Glykolyse (Melanom, Prostata, Lunge, Zervix, Brust, Kolon, Leukämien)
 - Quercetin, Curcumin, Genistein, Melatonin, EGCG, OPC, Resveratrol, Knoblauch, Mariendistel
- MYC stimuliert mitochondriale Glutaminolyse, aber auch Glykolyse und Lipolyses → Diclofenac, Artesunat
- HER2 und EGFR steigern Glykolyse, Glutaminolyse und FS-Stoffwechsel → EGCG, Quercetin, Curcumin, Resveratrol
- COX-2 wirkt proinflammatorisch, invasiv, angiogenetisch, proliferativ, antiapoptotisch, metastatisch
 Aspirin, Weihrauch, Curcumin, EGCG, Knoblauch, Etodolac, Celecoxib, kein Fleisch, keine Milch

Mutationen

- BRAF-Mutation liebt Ketone und Fette (Darmkrebs, Melanom)
 Melatonin, Metformin, Berberin, Quercetin, Curcumin, Bewegung
- RAS steigert Glykolyse und Laktatproduktion, reduziert OXPHOS, ROS ↑
- KRAS (aggressiveres RAS-Gen) steigert Glykolyse und Glutaminolyse, oft bei Pankreastumoren und im Stadium IV anderer Tumore
 Dipyridamol und Chloroquin, vegetarische Ernährung
- Östrogene blockieren mit Tamoxifen, Melatonin, Metformion, Indol-3-Carbinol
- BRCA-1 und 2-Mutation repariert Tumor DNA (Brust, Pankreas, Prostata, Knochen, Pharynx, Gastrointestinal, Speicheldrüsen)
 Selen, Indol-3-Carbinol, DIM (Diindolylmethan aus Brokkolisamen)

COC-Protokoll

Care Oncology Clinic, UK (unter anderem bei Glioblastom)

zum Einsatz kommen die 4 Substanzen:

Metformin, Atorvastatin, Mebendazole, Doxycyclin

Metformin 500 mg 1-0-1 durchgehend

Atorvastatin 20 mg 1 – 0 – 0 durchgehend

Mebendazol (Vermox) 100 mg 1-0-1 über 3 Tage, dann

Doxycyclin 200 1-0-0 über 10 Tage,

dann wieder 3 Tage Vermox,

dann noch ein zweites Mal 10 Tage Doxycyclin

und ein 3. Mal 3 Tage Vermox

Vermox insgesamt 9 Tage und Doxycyclin insgesamt 20 Tage

McLalland-Protokoll

über 3 Monate (Beispiel): durchgehende Medikation

Kupferkomplex 3 mg 3 x 1 zwischen dem Essen

Natriumselenit 200 µg 2 morgens vor dem Essen

Kalium-Magnesium-Citrat 3 x 1 zwischen dem Essen

Vitamine A-D-E-K 2 Tropfen zum Essen

Omega-3-FS 500 mg 1 - 1 - 1

Metformin 500 mg 1-0-1 (Pause beim Fasten)

Atorvastatin 20 mg 1-0-0

Propranolol (Dociton) 20 mg 1 Kps. zur Nacht

LDN 3 mg zur Nacht

Mc Lalland-Protokoll

Hunger-Phase (4 Wochen)

Berberin 500 mg 1-0-1

Dipyridamol 200 mg 1-0-0

Aspirin 100 mg 0 - 1 - 0

Cimetidin 400 mg 1 Kps. 2 h n.d. Abendessen

Niclosamid (Yomesan) 0-1-0 zum Essen mit Fett/Öl

CURCUMIN DIRECT Spray 6 x 2 Sprühstöße (Wangenschleimhaut)

Quercetin 500 mg 1-0-1

EGCG 500 mg 2-3 x wöchentl. 1 Infusion

Resveratrol 100 mg 2 x wöchentl. 1

rechtsdrehende Milchsäure 3 x 8 ml

Enzyme (z.B. DoloZym forte) 1 x 3 Kps. 30 min v.d.E.

BicaNorm 1-1-1

Mc Lalland Protokoll

Kill-Phase (3 Wochen)

Vermox (Mebendazol)

Garcia gambogica 500 mg

Sulfalazin 500 mg

Ibuprofen 400 mg

Artesunat 250 mg

Vitamin C 30-90g

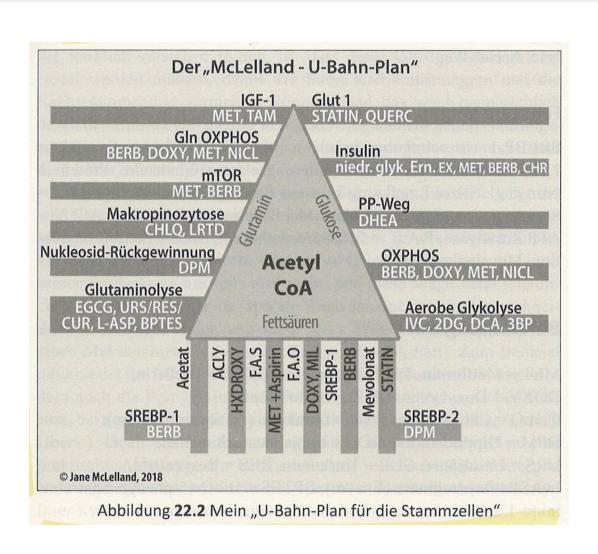
evtl. MTX-HSA 50-100 mg

0-1-0 z.E. mit Fett/Öl

1 - 1 - 1

1 – 1 – 1 (einschleichen, Leberwerte kontrollieren)

1 - 0 - 0


2-3- x wöchentl. Infusionen oder 3-4 x 50 mg tgl. oral

4 x wöchentl.

alle 2-3 Wochen 1 Infusion

McLalland

McLalland U-Bahn-Plan für Stammzellen

Glutamin-Weg

IGF-1

Glut gesteuerte OXPHOS

mTOR

Makropinozytose

Nukleosid-Rückgewinnung

Glutaminolyse

Metformin, Tamoxifen

Berberin, Doxycylin, Metformin, Niclosamid

Metformin, Berberin

Chloroquin, Loratadin (H1-Blocker)

Dipyridamol

EGCG, Urolsäure / Resveratrol / Curcumin, L-Asperginase,

BPTES (Glutaminaseinh.)

Glukose-Weg

Glut 1 Statin, Quercetin

Insulin niedrig glyk. Ern, Bewegung, Metformin, Berberin, Chrompicolinat

DHEA

OXPHOS Berberin, Doxycyclin, Metformin, Niclosamid

Aerobe Glykolyse Iveremctin, 2-Desoxy-D-Glukose, DCA (Dichloracetat), 3-Brompyruvat

Fettsäuren-Weg

SREBP-1 Berberin

SREBP-2 Dipyridamol

Acetat

PPP

ATP-Citrat Hydroxycitrat aus Garcinia Gambogia (Tamarinde)

Fettsäuresynthese Metformin + Aspirin

Fettsäureoxidation Doxycyclin, Mildronat (Meldonium)

Mevolonat Statin

McLalland

Glut 1	Quercetin, Silibinin
Glut 2	Quercetin, EGCG (Leberkrebs)
Glut 3	Kaempferol (Brust, Eierstock, Kolorektal, Rhabdomyo)
Glut 4	Ritonavir (Myelom)
Glut 5	Apigenin (Brust, Prostata, Niere)

Inhibitoren

Glykolyse: 2DDG, Alpha-Liponsäure, Aspirin, Curcumin, DCA, Diclofenac, EGCG, Melatonin, Quercetin, Vit. E, Vit. C

OXPHOS: Berberin, Doxycyclin, Fenofibrat, Ivermectin, Metformion, Niclosamid, Propranolol, Sulforaphane, Vit. E

Autophagie: Chloroquin, Dipyridamol, Doxycyclin, Hydrochloroquin, Loratadin, Niclosamid, Omeprazol, PPI, Propranolol, Schwarzkümmel

Topoisomerase: Boswellia

Microtubuli: Fenbendazol (mit DCA), Mebendazol (mit Autophagie-Inhibitoren), Statine

DNA-Methylierung: Curcumin, Berberin, Schwarzkümmel

Antioxidantion und Glutathion: Celecoxib, Mutterkraut, PQQ, Sulfalazin, Sulforaphan

Inhibitoren

Tumor-Micro-Environment: Aspirin, Metformion, Pyrvinium, Sulfalazin

Growth Factors: Dipyridamol, Exemestan, LDN (Low dose Naltrexon)

VEGF: Propranolol, Sulforaphan, Curcumin, EGCG, Schwarzkümmel

HIF-1: Curcumin, DCA, EGCG, Quercetin, Resveratrol, Sulforaphan,

Schwarzkümmel

MMP: (Metalloproteinasen): Alpha-Liponsäure, Doxycyclin, Fenofibrat, Mebendazol, Sulforaphan, Mutterkraut

NFkB: Artesunat, Aspirin, Berberin, Boswellia, CBD, Curcumin, Doxycyclin, Fenofibrat, Ivermectin, Niclosamid, Schwarzkümmel, Atorvastatin, Sulfalazin, Sulforaphan

COX: Aspirin, Celecoxib, Diclofenac, Dipyridamol, Curcumin

5-LOX: Knoblauch, Boswellia, Schwarzkümmel

Angiogense: Cimetidin, Curcumin, EGCG, Fenofibrat, Propranolol

Phyto-Targets

Icons unter Verwendung von Ressourcen von Flaticon.com

Literatur

- Cracking Cancer Toolkit, Jeffrey Dach ISBN 9781732421011
- Naturopathic Oncology, McKinney ISBN 9781926946153
- Den Krebs aushungern, ohne selbst zu hungern, Jane McLelland ISBN 9783867312349
- How to starve cancer, Jane McLelland ISBN 9780951951743